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In order to accurately estimate the iron loss for rotating machinery, this paper proposes the novel identification method for the 

hysteresis model by using the isotropic vector play model so as to accurately represent the rotational hysteresis loss of magnetic materials. 

The numerical results are compared with the conventional identification method to demonstrate the effectiveness of the proposed 

identification method. 

 
Index Terms—Electromagnetic fields, finite element methods, magnetic hysteresis. 

 

I. INTRODUCTION 

N order to accurately estimate the iron loss of rotating 

machinery, it is necessary to consider not only the alternating 

hysteresis loss but also the rotational hysteresis loss of 

magnetic materials in the magnetic field analyses. For example, 

the Preisach model [1], [2] and its extended versions have been 

widely used to represent the various hysteretic characteristics 

such as magnetic hysteresis and vector properties. 

In this paper, we adopt the isotropic vector play model [3], 

which is mathematically equivalent to the Preisach model, to 

represent the vector hysteretic properties of electrical steel 

sheets. Although the play model needs to be identified from dc 

symmetric loops [4] due to its rate-independent properties, it is 

difficult to accurately measure and estimate the dc hysteretic 

properties. A measurement error can result in inadequate 

representation accuracy of hysteresis models such as the 

rotational hysteresis loss. In order to improve the representation 

accuracy of the rotational hysteresis loss, this paper proposes 

the novel identification method for the isotropic vector play 

model. We demonstrate the effectiveness of the novel 

identification method compared with the conventional 

identification method under alternating and rotational flux 

density conditions. 

II.  PLAY MODEL 

A. Property of Play Model 

A discretized form of the isotropic vector play model [3] can 

represents the hysteretic properties with an output of magnetic 

field H from an input of magnetic flux density B because finite 

element analysis using magnetic vector potential as an  

unknown variables requires the calculation of H from B. 
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where pζn is the play hysteron operator with a width of ζn, ζn = 

nBmax/M, Bmax is the maximum measurable magnetic flux den-

sity, pζn
* is the play hysteron operator at previous time step, M 

is the number of hysterons, and fζn is the shape function for the 

play hysteron operator |pζn|. The identification method for the 

Preisach model can be applied to the play model [5] because the 

play model is mathematically equivalent to the Preisach model 

[1], [2]. 

The shape function fζn is assumed to be piecewise linear  

as follows: 
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where µ is the slope of the shape function fζn. 

 

B. Hysteresis Losses 

For alternating and rotational flux density input with 

amplitude Bm, the play model provides the alternating hysteresis 

losses Walt and the rotational hysteresis loss Wrot by shape 

function fζn as follows: 
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where ζN ≤ Bm < ζN+1. 

Fig. 1 shows the alternating and rotational hysteresis losses 

obtained from the play model, which is identified from the dc 

symmetric loops of an electrical steel sheet JIS: 50A470. The 

intervals ∆Bm (= Bm
i − Bm

i-1) of hysteresis loops is 0.01 T. The 

rotational hysteresis loss fluctuates remarkably at more than  

1.5 T because some of µ in (3) in n > 0 is positive. Therefore, it 

is necessary to develop the identification method for the 

isotropic play model which satisfy the condition that all of µ in 

n > 0 are negative. 
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(a)                                                                (b) 

Fig. 1. Hysteresis losses per cycle for JIS: 50A470. (a) Alternating hysteresis 

loss. (b) Rotational hysteresis loss.  

III. NOVEL IDENTIFICATION METHOD FOR PLAY MODEL 

A. Procedure of Novel Identification Method 

In the play model, when an alternating flux density input 
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is given, the initial magnetization curve is represented by: 
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where Bm
i is the maximum magnetic flux density for the i-th 

symmetric loop as shown in Fig. 2. Substituting (3) into (9), the 

increment of the magnetic field Hb from Bm
i-1 to Bm

i under  

alternating flux density conditions is given by: 
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where d is the incremental permeability and d corresponds to 

µ(Bm
i−ζ0, ζ0). 

Substituting (3) into (6), the increment of the alternating  

hysteresis loss Walt from Bm
i-1 to Bm

i is given by: 
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In this paper, it is assumed that µ changes exponentially as 

follows: 
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where K1 and K2 is the variables depending on Bm
i. As shown in 

Fig. 2, µ(Bm
i−ζn, ζn) is equal to 0 in n = Bm

i/∆ζ − 1 and i > 0 [5]. 

Substituting (12) into (10) and (11), the variables K1 and K2 are 

solved by the Newton-Raphson method. In this paper, the play 

model is identified from the variables K1 and K2 depending on 

Bm
i, which is called “Robust Play Model (RPM).” 

 

B. Numerical Results 

Fig. 3 shows the variables K1 and K2 calculated from the dc 

hysteresis loops of electrical steel sheet JIS: 50A470. The 

intervals ∆Bm of hysteresis loops is 0.01 T. Fig. 4 shows the 

simulated hysteresis loops of the electrical steel sheet under 

alternating flux density conditions. The RPM gives an accurate 

representation of the hysteretic properties. As shown in Fig. 1, 

the rotational hysteresis loss obtained from the RPM forms a 

smooth curve. Futermore, the RPM can be applied the identified 

method from the measured rotational hysteresis loss [6] to 

represent the saturation property under rotational flux density 

conditions. The detail of the proposed identification method and 

further numerical results will be reported in the full paper. 

  
Fig. 2. Distribution function.           Fig. 3. K1 and K2 for JIS: 50A470. 

 

   
(a)                                                          (b) 

 

   
(c)                                                          (d) 

Fig. 4. Simulated symmetric hysteresis loops for alternating flux density. 

(a) Bm = 0.4 T. (b) Bm = 0.8 T. (c) Bm = 1.2 T. (d) Bm = 1.5 T. 
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